Quantum Computing At Room-Temperature, Quantum Bits Store Data For Nearly Two Seconds

 
20120703-191803.jpg

One of the main obstacles in the way of a practical quantum computer has been removed. Researchers were recently able to create quantum bits (qubits) and store information on them for nearly two seconds at room temperature.

The majority of the other current systems used rely on very complex and costly equipment that traps an individual atom or electron in a vacuum and then cools the entire system down to nearly absolute zero.

The new research was conducted by a group of Harvard scientists, led by Professor of Physics Mikhail Lukin and including graduate students Georg Kucsko and Peter Maurer and postdoctoral researcher Christian Latta. The researchers think that they have solved the problem through the use of one of the most atomically pure materials on Earth, diamonds.

“Using a pair of impurities in ultra-pure, laboratory-grown diamonds, the researchers were able to create quantum bits and store information in them for nearly two seconds, an increase of nearly six orders of magnitude over the life span of earlier systems.”

The research, detailed in the June 8 issue of Science, is a crucial step to the eventual construction of a functional quantum computer, and the technology can potentially be used for a wide variety of other purposes.

“What we’ve been able to achieve in terms of control is quite unprecedented,” Lukin said. “We have a qubit, at room temperature, that we can measure with very high efficiency and fidelity. We can encode data in it, and we can store it for a relatively long time. We believe this work is limited only by technical issues, so it looks feasible to increase the life span into the range of hours. At that point, a host of real-world applications become possible.”

In addition to its use in a practical quantum computer, the system could potentially be used in applications that “include ‘quantum cash’ (a payment system for bank transactions and credit cards that relies on the coding of quantum bits to thwart counterfeiters) and quantum networks (a highly secure communications method that uses quantum bits to transmit data).”

“This research is an important step forward in research toward one day building a practical quantum computer,” said Kucsko, who works in Lukin’s lab and is one of two first authors of the paper. “For the first time, we have a system that has a reasonable timescale for memory and simplicity, so this is now something we can pursue.”

 

 

The framework for the research was made several years ago, when “researchers discovered that nitrogen-vacancy (NV) centers, atomic-scale impurities in lab-grown diamonds, behave in the same way as single atoms. Like individual atoms, each center possesses a spin, which can be polarized, similar to on a bar magnet.”

“Using lasers, researchers are able not only to control the spin, but to detect its orientation as it changes over time.
But the idea of using the NV centers to form the backbone of a quantum computer simply wasn’t practical, largely because they can only hold data for about one-millionth of a second before their quantum properties — and any data they may have held — are lost.”

The reason for this was from another impurity in the diamond crystal. “In initial experiments, the team used diamonds that contained 99 percent carbon-12 atoms, which have no spin. The remainder, however, was made up of carbon-13 atoms, a tricky isotope that contains a spin in the atom’s nucleus. Though weak, the interaction with those spins was causing the NV centers’ short life spans.”

“With this latest research, however, Lukin and his team turned what was once a challenge — the interaction between the NV center and carbon-13 atoms­ — to their advantage.”

“The nuclear spin of the carbon-13 makes an ideal quantum bit, because they are very isolated,” Lukin said. “Because they interact with so few outside forces, they have relatively long coherence times. Of course, the same properties that make them ideal qubits also make them difficult to measure and manipulate.”

The solution that the researchers came up with was surprisingly simple. Instead of finding a feasible way to measure the spin of the carbon atoms themselves, they used the NV center to do so for them.

With the help of researchers at Element Six, a British-based company specializing in the manufacture of artificial diamonds, they pioneered a new technique to make crystals that were even more pure than previously: 99.99 percent carbon-12. “Researchers then bombard the crystal with nitrogen to create the NV center, which interacts with a nearby carbon-13 atom.”

“The result of that interaction is that the NV center mirrors the state of the carbon atom, meaning researchers can encode a bit of information into the spin of the atom, then ‘read’ that data by monitoring the NV center.”

“The system we’ve developed uses this very local probe, the NV center, to allow us to monitor that spin,” Lukin said. “As a result, for the first time, we can encode a bit of information into that spin, and use this system to read it out.”

“However, encoding information into the spin of the carbon-13 atom and reading it out using the NV center is only a step on the road to a quantum computer. To truly be useful, researchers had to determine how to take advantage of the atom’s quantum properties — that is, its ability to occupy two states simultaneously.”

“That ability to be in two states at the same time is a key principle of quantum computers. As opposed to traditional computers, which encode bits of information as either zero or one, quantum computers rely on atomic-scale quantum mechanics to give quantum bits both values at once. That property, in theory, allows quantum computers to perform multiple computations in parallel, making them vastly more powerful than traditional computers, which perform operations in sequence.”

The solution that the researchers came up with was a two-step process. “The first step is to cut the connection between the NV center and the carbon atom. Using massive amounts of laser light, researcher are able to effectively keep the NV center occupied and prevent it from interacting with the carbon atom. In step two, the diamond crystal is bombarded with a specific set of radio frequency pulses, suppressing the interaction between the carbon-13 atom and any nearby atoms.”

“By limiting interactions with the carbon-13 atom, we can extend the life of the qubit and hold the data for longer,” Lukin said. “The end result is that we’re able to push the coherence time from a millisecond to nearly two seconds.”

Researchers at the California Institute of Technology and the Max-Planck-Institut für Quantenoptik also participated in the research. Funding was provided by theNational Science Foundation, the Center for Ultracold Atoms, the Defense Advanced Research Projects Agency, Element 6, the Packard Foundation, the European Union, the Swiss National Science Foundation, and the Sherman Fairchild Foundation.

Source: Harvard University
Image Credits: Stephanie Mitchell/Harvard Staff Photographer

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll to Top