Researchers think that by measuring the unique properties of light on the scale of a single atom, that they have “characterized the limits of the ability of metals to be used in devices that rely on the enhancement of light.”
The field, plasmonics, is primarily about taking advantage of plasmons, which are electrons that are in a state of excitation because of light. This is the phenomenon that produces electromagnetic field enhancement. Metals at the nanoscale are enhanced significantly more by this than any other material.
“Until now, researchers have been unable to quantify plasmonic interactions at very small sizes, and thus have been unable to quantify the practical limitations of light enhancement. This new knowledge should help in the development of devices, such as medical sensors and integrated photonic communications components, since scientists will have a roadmap for precisely controlling the scattering of light.”
“Typically, plasmonic devices involve the interactions of electrons between two metal particles separated by a very short distance. For the past 40 years, scientists have been trying to figure out what happens when these particles are brought closer and closer, at sub-nanometer distances, according to the Duke electrical engineers.”
“We were able to demonstrate the accuracy of our model by studying the optical scattering from gold nanoparticles interacting with a gold film,” said Cristian Ciracì, postdoctoral fellow at Duke’s Pratt School of Engineering. “Our results provide a strong experimental support in setting an upper limit to the maximum field enhancement achievable with plasmonic systems.”
“The results of Ciracì and co-workers’ experiments, which were conducted in the laboratory of senior researcher David R. Smith, William Bevan Professor of electrical and computer engineering at Duke, were published in the journal Science as the cover article.”
“In their experiments, Ciracì and his team started with a thin gold film coated with a ultra-thin monolayer of organic molecules, studded with precisely controllable carbon chains. Nanometric gold spheres were dispersed on top of the monolayer. Essential to the experiment was that the distance between the spheres and the film could be adjusted with a precision of a single atom. In this fashion, the researchers were able to overcome the limitations of traditional approaches and obtain a photonic signature with atom-level resolution.”
“Once you know maximum field enhancement, you can then figure out the efficiencies of any plasmonic system,” Smith said. “It also allows us to ‘tune’ the plasmonic system to get exact predictable enhancements, now that we know what is happening at the atomic level. Control over this phenomenon has deep ramifications for nonlinear and quantum optics.”
“The Duke team worked with colleagues at Imperial College, specifically Sir John Pendry, who has long collaborated with Smith.”
“This paper takes experiment beyond nano and explores the science of light on a scale of a few tenths of a nanometer, the diameter of a typical atom,” said Pendry, physicist and co-director of the Centre for Plasmonics and Metamaterials at Imperial College. “We hope to exploit this advance to enable photons, normally a few hundred nanometers in size, to interact intensely with atoms which are a thousand times smaller.”
Source: Duke University
Image Credits: Sebastian Nicosia and Cristian Cirac