A new software system has been developed that is able to estimate specific greenhouse gas emissions throughout entire urban landscapes, all the way down to specific buildings and roads.
Thanks to this new creation from researchers at Arizona Stare University, it’s now possible at a much broader level to quantify carbon dioxide emissions.
Named “Hestia,” after the goddess of the home and hearth in Greek mythology, the system “combines extensive public database ‘data-mining’ with traffic simulation and building-by-building energy-consumption modeling. Its high-resolution maps clearly identify CO2 emission sources in a way that policymakers can utilize and the public can understand.”
“Cities have had little information with which to guide reductions in greenhouse gas emissions — and you can’t reduce what you can’t measure,” said Kevin Gurney, an associate professor in ASU’s School of Life Sciences, and senior scientist with the Global Institute of Sustainability. “With Hestia, we can provide cities with a complete, three-dimensional picture of where, when and how carbon dioxide emissions are occurring.”
The researchers gathered data from various different sources; including “local air pollution reports, traffic counts, and tax assessor parcel information.” Afterwards, the data were then put together within a modeling system for quantifying CO2 emissions at the level of individual buildings and street segments.
“So far, scientists have applied Hestia to the city of Indianapolis, and work is ongoing for the cities of Los Angeles and Phoenix. They hope to ultimately map the CO2 emissions in all major cities across the United States, which accounts for nearly one-quarter of all global CO2 emissions. The Hestia research team believes this type of detailed emissions information will help determine what we as a society can do locally and globally about climate change.”
“As a community, we must take a leadership role in sustaining our relationship with the environment,” said ASU President Michael M. Crow. “This research, and its implications for global engagement regarding climate change, is an exciting step forward. Hestia gives us the next tool we need to help policymakers create effective greenhouse gas legislation.”
“These results may also help overcome current barriers to the United States joining an international climate change treaty,” agreed Gurney, Hestia’s lead scientist. “Many countries are unwilling to sign a treaty when greenhouse gas emission reductions cannot be independently verified.”
The very great detail and accuracy that Hestia provides can do a lot to help cities, according to the researchers. Even on the national scale, Hestia could help to identify where the most effective investments in energy and greenhouse gas reductions would be.
“Leading in sustainability is not easy; however, as mayor, I am committed to doing so,” Phoenix Mayor Greg Stanton said. “Undoubtedly, Hestia will be a good tool to help us make more informed decisions as leaders in Phoenix and the Valley around issues of air quality, health and a sustainable future.”
“Although climate change presents society with tough challenges, Gurney believes this new system enables concrete, positive steps towards mitigating the problem,” the Arizona State University news release notes.
“Hestia offers practical information we can use to identify the most cost-effective ways to reduce emissions and track progress over time,” Gurney said. “Scientists have spent decades describing the seriousness of climate change. Now, we are offering practical information to help do something about it.”
Here’s a final note from Arizona State University on the broader work being done in this arena: “Hestia is part of a larger effort that combines information about emissions with ground and satellite-based measurements of atmospheric carbon dioxide concentration. It is now part of the INFLUX experiment in Indianapolis and is expected to complement NASA’s planned December 2013 launch of the Orbital Carbon Observatory satellite, which will measure the concentration of CO2 in Earth’s atmosphere.”
The new system is outlined in detail in an article published October 9th in the journal Environmental Science and Technology.
Source: Arizona State University
Image Credits: Bedrich Benes and Michel Abdul-Massih