NASA's New RBSP Mission Will Help Predict Space Weather (VIDEO) | PlanetSave

NASA's New RBSP Mission Will Help Predict Space Weather (VIDEO)


NASA is preparing to launch two new satellites that will team up to improve our understanding of space weather and solar forecasting. The satellites will be launched August 24th from Cape Canaveral, Fla., and begin NASA’s Radiation Belt Storm Probes (RBSP) mission.

The mission will give researchers a better understanding of how the Van Allen radiation belts react to solar weather, “thereby contributing to Earth’s space weather. Changes in space weather can disable satellites, overload power grids, and disrupt GPS service.”

“In addition, coronal mass ejections (CMEs) periodically release billions of tons of charged particles from the sun into space. And, with the 11-year solar cycle expected to peak in 2013, there is an increased potential for CME-caused power surges to knock out electric transformers that support lighting, heating, air conditioning, sewage treatment, and many other necessities of daily life.”

“Space weather storms are made up of gusts of electrically charged particles — atoms that have been stripped of electrons — that constantly flow outward from the sun. When these particles reach Earth, some become trapped in Earth’s magnetosphere to form the Van Allen radiation belts, two donut-shaped regions that encircle Earth. The RBSP mission will collect data on particles, magnetic and electric fields, and waves to reveal how the belts change in space and over time.”

“Craig Kletzing [KLET-zing], F. Wendell Miller Professor of physics and astronomy in the University of Iowa College of Liberal Arts and Sciences, is the principal investigator for the UI team that designed the Electromagnetic Instrument Suite with Integrated Science (EMFISIS). One of five different RBSP instrument pairs, or suites, EMFISIS is a $30 million NASA project to study how various amounts of space radiation form and change during space storms.”

“The other four instrument suites are directed by teams from the University of New Hampshire, the University of Minnesota, the New Jersey Institute of Technology, and the National Reconnaissance Office. The two RBSP spacecraft — each weighing 1,455 pounds — were constructed for NASA at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md.”

Says Kletzing: “The Radiation Belt Storm Probes is actually the first NASA mission to be launched in more than two decades that’s going back to revisit the radiation belts since they were discovered by the late University of Iowa professor James A. Van Allen over 50 years ago. There are still lots of things we don’t understand about how they work, about how the sun delivers energy to the local environment around the Earth, and particularly about how it creates these two bands of very energetic particles that we call the radiation belts.”

“Like many other NASA projects, the Radiation Belt Storm Probes mission has two main reasons for existing: it will gather practical information and it is a part of humanity’s continuing exploration of space.”

“The practical reason is: that’s a part of space that we utilize. The outer radiation belts are where all our communication satellites exist, the various things that make sure that GPS works, as well as telephone communications,” Kletzing says. “They can be affected by these particles, and, in fact, it has happened that those satellites have actually been knocked out by radiation.”

“So, understanding these effects and how they happen and, hopefully, get beyond to where we can do some level of prediction is a very important practical reason.”

“Additionally, the various manned missions that NASA has planned to go beyond the Space Station to places like the moon or Mars also require transiting through this region,” he says. “So, understanding the right time to go — when the particles are fewest so that you don’t impact human health — is a very important thing to understand.”

“The less practical reason for undertaking the RBSP project is familiar to mountain climbers and other explorers — because it’s there.”

“We want to know how the heck the darn thing works,” he says. “We’ve learned from science over the years that you can’t always predict that one thing you learn here will influence another field and allow whole breakthroughs to occur. So it’s really both. The practical, direct reasons, but also if we understand the physics of the radiation belts, that helps us understand physics in other stellar systems and all sorts of other phenomena that are related.”

“Here’s how the RBSP project will work: One rocket will launch two satellites. The two satellites will orbit Earth from about 300 miles above Earth out to as far as 25,000 miles at apogee. The satellites will be given slightly different orbits so that over time, one will run ahead of the other. They will fly nearly identical orbits that cover the entire radiation belt region, lapping each other during the course of the two-year mission.”

“We talk about one spacecraft lapping the other,” says Kletzing. “What makes that exciting is that both spacecraft are exactly the same — all the same sets of measurements are on the two different spacecraft. So, for the first time, we’ll have completely identical sets of instruments on both sides that we can compare between the two satellites. And actually say, ‘Oh, this is happening here, and that’s happening there.’ Maybe they work together or maybe they’re different things. But we’ve never had a pair of identical spacecraft in this region before.”

Source: University of Iowa

Image Credits: NASA

Keep up to date with all the most interesting green news on the planet by subscribing to our (free) Planetsave newsletter.

About the Author

's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.